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We study the scaling of the (basis-dependent) Shannon entropy for two-dimensional quantum antiferromagnets
with Néel long-range order. We use a massless free-field description of the gapless spin wave modes and
phase space arguments to treat the fact that the finite-size ground state is rotationally symmetric, while there
are degenerate physical ground states which break the symmetry. Our results show that the Shannon entropy
(and its Rényi generalizations) possesses some universal logarithmic term proportional to the number NNG of
Nambu-Goldstone modes. In the case of a torus, we show that Sn>1 � const. × N + NNG

4
n

n−1 ln N and S1 �
const. × N − NNG

4 ln N , where N is the total number of sites and n the Rényi index. The result for n > 1 is in
reasonable agreement with the quantum Monte Carlo results of Luitz et al. [Phys. Rev. Lett. 112, 057203 (2014)],
and qualitatively similar to those obtained previously for the entanglement entropy. The Shannon entropy of a line
subsystem (embedded in the two-dimensional system) is also considered. Finally, we present some density-matrix
renormalization group (DMRG) calculations for a spin- 1

2 XY model on the square lattice in a cylinder geometry.
These numerical data confirm our findings for logarithmic terms in the n = ∞ Rényi entropy (also called
− ln pmax). They also reveal some universal dependence on the cylinder aspect ratio, in good agreement with the
fact that, in that case, pmax is related to a noncompact free-boson partition function in dimension 1+1.
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I. INTRODUCTION

Recently, there is a growing interest in utilizing
information-theoretic quantities to characterize phases, to
go beyond the traditional characterizations based on order
parameters and correlation functions. The most popular among
them is entanglement entropy. In fact, many low-energy and
long-distance properties of quantum many-body systems can
be extracted from the scaling of the entanglement entropy of
some large subsystem. Two prototypical examples are critical
spin chains, where the central charge can be read off from the
scaling of the entanglement of a segment [1–3], and that of
gapped topologically ordered states in dimension two, which
have some universal subleading contributions related to the
nature of the fractionalized excitations (quantum dimensions)
of the phase [4,5].

It was also realized that a somewhat simpler entropy,
the (basis-dependent) Shannon entropy, share some similar
properties (see Ref. [6] for a review). It is defined as follows.
When expanded in some discrete basis {|i〉}, a quantum state
|ψ〉 defines a set of probabilities

pi = |〈ψ |i〉|2 (1)

that can, in turn, be used to define a Shannon entropy:

S1 = −
∑

i

pi ln pi. (2)

In the following, it will also be useful to consider a gener-
alization of this entropy, the Shannon-Rényi entropy (SRE):

Sn = 1

1 − n
ln

(∑
i

pn
i

)
, (3)

with Eq. (1). For one-particle problems described by a
wave function ψ(r) in real space, the entropies are simply
related by Sn = 1

1−n
ln Pn to the so-called inverse participation

ratios : Pn = ∫
dDr|ψ(r)|2n. The latter measure how spatially

localized is the particle. In the presence of disorder it can
be used to detect Anderson metal-insulator transitions [7],
as follows: in the delocalized phase one has Pn � L−D(n−1),
where D is the spatial dimension, and L the linear system size
(thus LD is the Hilbert space dimension). In contrast, one has
instead Pn � L0 in the localized phase. At the transition point
it scales like Pn � L−αn(n−1) where αn defines a continuous
family of critical exponents (multifractality). In the notation
of Eq. (3), it means Sn � αn ln L.

The situation is quite different for many-body systems,
which have exponentially many [∝ exp (const. × LD)] basis
states. A generic many-body wave function has some nonzero
weights on a finite fraction of these basis states. As a
consequence, the leading behavior of the SRE [Eq. (3)] is
generically a volume law, which means Sn � αnL

D . This may
also be interpreted as “multifractality” [8] with interesting
features at phase transitions [9]. However, it should be
noted that, contrary to that in one-body wave functions, the
“multifractality” is generic for wave functions living in a
many-body Hilbert space, even for featureless product states.
Consider for instance N independent spin- 1

2 in the same
state cos(θ )|↑〉 + sin(θ )|↓〉. The SRE of that tensor product
state is Sn = N

1−n
ln (cos2n θ + sin2n θ ), which is a nonlinear

function of n. Here, the number of spins N corresponds to
the volume LD of the system. In fact, the coefficient of the
leading volume-law term in the SRE is generally nonuniversal
and depends on microscopic details, as it is evident in the
above simple example. Thus it is not an interesting quantity
from the viewpoint of elucidation of universal behavior in a
quantum phase. Nevertheless, subleading terms can contain
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universal information which are determined by the long-
distance properties of the system. This has been studied in
quantum spin chains in particular, and these corrections are
typically O(1) for periodic chains [10–12] and O(ln L) for
open chains [13,14].

In this paper, we are interested in two-dimensional (2D)
quantum antiferromagnets, where the spin rotation symmetry–
U(1) or SU(2)–is spontaneously broken at zero temperature
in the thermodynamic limit. In such systems with magnetic
long-range order and gapless Nambu-Goldstone modes, it was
observed, using (modified) spin-wave calculations [15] and
quantum Monte Carlo (QMC) on Heisenberg models [16]
that the entanglement entropy possesses some additive ln L

corrections to the boundary law. Soon after, these results
were explained by some analytical calculations (quantum rotor
model and a nonlinear sigma model) [17], leading to the
prediction that, in two dimensions, the coefficient of ln L

is NNG/2, where NNG is the number of Nambu-Goldstone
modes. We note that a related discussion was also made for
Heisenberg ferromagnets in Refs. [18–20]. The situation is
however quite different from antiferromagnets of our interest,
which have linearly dispersing Nambu-Goldstone modes and
a unique ground state in a generic finite-size system.

Recently, the SRE of several 2D magnets were com-
puted using QMC [6,21,22]. By simulating spin- 1

2 XXZ and
Heisenberg models, U(1) and SU(2) broken symmetries were
investigated. The SRE for the complete system (torus), as well
as the entropy of a line subsystem were measured. In these
studies, the basis states |i〉 chosen to define the probabilities
pi (and the SRE) are eigenstates of the local magnetization
Sx(r). This basis choice requires to select a particular spin
direction in the xy (easy) plane of the system, and such a
choice therefore explicitly breaks the spin rotation symmetry
about the z axis. In the present work, we will also focus on
such a situation, where the quantization axis used to define the
local basis is not invariant under the rotation symmetry of the
Hamiltonian, but corresponds to a possible ordering direction
for the order parameter (i.e., the sublattice magnetization).

In all the cases studied in Refs. [6,21,22], some additive ln L

corrections were observed in the SRE in presence of magnetic
long-range order. Some of these results are summarized in
Table I. Motivated by these numerical results, we study in
this paper the SRE of these systems by using an effective
relativistic (free boson) field theory of the Nambu-Goldstone
modes. While we are primarily interested in the cases with a
spontaneously broken U(1) or SU(2) symmetry, our analysis
can be applied to the cases with a more general spontaneously
broken continuous symmetry.

It should be noted that, Nambu-Goldstone modes, which
accompany a spontaneous breaking of a continuous symmetry,
are classified into two categories: type I and type II [23] or
type A and type B [24]. In this paper, we focus on the cases
only with the type-I (type-A with a linear dispersion) Nambu-
Goldstone modes, which can be described by the relativistic
free boson field theory. In such cases, we can identify the
number of the Nambu-Goldstone modes NNG with the number
of broken symmetry generators. We leave the analysis of the
cases with type-II or type-B modes to the future, although
some part of our discussion could be applied to these cases as
well.

TABLE I. Subleading logarithmic terms in the SRE of the 2D
Heisenberg and XY models, possibly with ferromagnetic second
neighbor interaction J2 (which strengthens the magnetic order). n

is the Rényi (noted q in Ref. [21]). The numerical values obtained by
Toulouse’s group (Supplemental Material of Ref. [21]) are given in
the third column. We selected the best fit only for simplicity–which
does not do justice to their extensive and detailed data analysis. The
last column is the present theoretical prediction [Eq. (48)], which
combines the oscillators [Eq. (15)] and TOS (degeneracy factor)
contributions [Eq. (47)]. The number NNG of Nambu-Goldstone
modes is 2 for Heisenberg and 1 for XY.

ln(N ) coef.
Model n Ref. [21] NNG

4
n

n−1

Heisenberg
J2 = 0 ∞ 0.460(5) 0.5
J2 = −5 ∞ 0.58(2) 0.5

J2 = 0 2 1.0(2) 1
J2 = −5 2 1.25(4) 1

J2 = −5 3 1.06(3) 0.75
J2 = −5 4 1.0(1) 0.666

XY
J2 = 0 ∞ 0.281(8) 0.25
J2 = −1 ∞ 0.282(3) 0.25

J2 = 0 2 0.585(6) 0.5
J2 = −1 2 0.598(4) 0.5

J2 = 0 3 0.44(2) 0.375
J2 = −1 3 0.432(7) 0.375

J2 = 0 4 0.35(8) 0.333
J2 = −1 4 0.38(2) 0.333

We find a universal logarithmic term in the SRE with respect
to the system size, governed by the number of modes NNG. Our
theory is consistent with the numerical results obtained by the
Toulouse group, even though the quantitative agreement is not
perfect. We will also provide new numerical results for the
SRE on cylinders, to be compared with the theory. We believe
that our approach is on the right track and could be extended
for further quantitative improvements.

The paper is organized as follows. In Sec. II, we analyze
the contribution to the SRE of the fluctuations due to Nambu-
Goldstone modes. We first focus on the n = ∞ limit of the
SRE, S∞ ∼ − ln pmax, where pmax is the largest among the
probabilities of finding a particular basis configuration upon
the corresponding projective measurement of the ground state.
As far as the universal terms are concerned, we show that this
problem is closely related to the determinant of the Laplacian
in 2D (Sec. II C). While we find a universal logarithmic term,
its coefficient has the opposite sign to that obtained with
QMC. The discrepancy is attributed to the degeneracy of the
ground states in the presence of spontaneous breaking of a
continuous symmetry, as discussed in Sec. III. In Sec. IV,
we combine the results from earlier sections to derive the
universal logarithmic term in SRE for n > 1 and n = 1. In
Sec. V, we also discuss the logarithmic terms in the SRE of a
subsystem which has the geometry of a straight line embedded
in a 2D system, for which Luitz et al. [22,25] have some
QMC data indicating clearly the presence of universal log
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terms. Section VI presents some 2D DMRG calculations of
the ground state of the spin- 1

2 XX model on cylinders, from
which we extract − ln(pmax), the associated ln L term, as well
as an universal aspect-ratio-dependent contribution of order
O(1) that we compare to an analytical free-field calculation.
Section VII is devoted to conclusions and discussion.

II. OSCILLATOR/SPIN-WAVE CONTRIBUTIONS

A. Massless free scalar field

We first assume that the system is in a broken symmetry
state, with a well-defined direction of the order parameter
(say x). At low energy the interactions between spin-waves
are irrelevant and each mode can be described by a free
gapless scalar boson with a linear dispersion relation. As a
consequence we can consider the case of a single mode [i.e.,
broken U(1)] and the final result for the SRE will simply have
to be multiplied by the number of Nambu-Goldstone modes.

At each point r in space an angle φr describes the local
orientation of the order parameter with respect to its average
direction. At low energies and when coarse grained over
sufficiently long distances, these deviations are small and one
can treat them as real numbers (instead of angles in ] − π,π ]),
therefore neglecting the compactness of φr. This leads to the
Hamiltonian of a massless free scalar field:

H = 1

2

∫
d2r

[
χ⊥�2

r + ρs(∇φr)2
]
, (4)

where ρs is the stiffness, χ⊥ = c2

ρs
is the transverse suscepti-

bility, c the spin-wave velocity, and �r = ρs

c2 φ̇r is canonically
conjugate to φr. This is a collection of harmonic oscillators,
one for each momentum k:

H = 1

2

∑
k

(
c2

ρs

�2
k + ρsk2|φk|2

)
. (5)

B. Configuration with the highest probability

We start by considering the n = ∞ SRE, which amounts to
evaluate the probability of the “most likely” configuration. As
a warm up let us first recall that the (normalized) ground-
state wave function ψ of an harmonic oscillator with the
Hamiltonian H = 1

2m
p2 + 1

2mω2x2 is

ψ(x) =
(mω

π

)1/4
exp

(
−mω

2
x2

)
. (6)

The probability density pmax to find the particle at its “most
likely” location, which is the square of the wave function at
x = 0, is the square of the normalization factor:

pmax = |ψ(0)|2 =
(mω

π

)1/2
. (7)

Comparing this to Eq. (5), the mode k of the free field has a
mass mk = ρs

c2 and frequency ωk = c|k|. So, the probability
pmax(k) for the mode k to be “at the origin” is

pmax(k) =
(mkωk

π

)1/2
=

(
ρs |k|
πc

)1/2

. (8)

We are interested in the probability density to observe φr = 0
everywhere in space, so we impose φk = 0 for all k and get

posc
max =

∏
k �=0

pmax(k) =
∏
k �=0

(
ρs |k|
πc

)1/2

. (9)

Taking the logarithm, we obtain

− ln
(
posc

max

) = −1

2

∑
k �=0

ln
( ρs

πc

)
− 1

4

∑
k �=0

ln k2. (10)

The zero mode k = 0 is omitted since we assume that the
system is in a broken-symmetry state. Including the zero mode
would, in a finite volume, “delocalize” the order parameter
and restore the rotation symmetry. We will take later into
account the rotational symmetry of the finite-size ground state
by a correcting factor associated with the “degeneracy” of the
Anderson tower of states (TOS), see Sec. III. The first sum
in Eq. (10) is simply a volume term (∼L2) but the universal
contribution comes from the second sum, which we analyze
now.

C. Determinant of Laplacian

Since the −k2 are the eigenvalues of the Laplacian �, the
Eq. (10) is a lattice regularization of ln det′ �, where det′ means
that the zero eigenvalue is removed from the calculation of the
determinant.

One can regularize the sum by using a periodic L × L

lattice (torus), in which case the universal terms in the L → ∞
asymptotics can be extracted by means of an Euler-Maclaurin
expansion. A possible way to regularize ln det′ � is indeed to
use the Brillouin zone of an L × L square lattice:

�(L) =
∑
k �=0

ln(k2) =
′∑

n,m=− L
2 ··· L

2 −1

ln
(
k2
n + k2

m

)
, (11)

where the discrete momenta are given by kn = 2πn
L

and the
zero-mode (n = m = 0) is omitted. Using twice the Euler-
Maclaurin expansion at the trapezoid order gives

�(L) = (
1
2π − 3 − ln (2) + 2 ln (2π )

)
L2

+ ln(L2) + O(1). (12)

While the term proportional to L2 can be shown to depend on
the regularization scheme, the ln(L2) is universal.

In fact, det′ � is a quantity which has been studied
extensively in the literature (see for instance Refs. [26,27]).
In particular, on a compact surface without boundary and with
Euler characteristics χ , one has

ln det ′� � const. × L2 +
(

1 − χ

6

)
ln(L2). (13)

This result is remarkable since the coefficient of the ln(L2) term
is purely topological. It can be derived using the heat-kernel
method and zeta regularization for instance [28]. An explicit
calculation, in cylinder geometry, is presented in Appendix A.
We also note that on a cylinder or on a torus, the quantity
ln det′ � will also contain some finite aspect-ratio dependent
term, directly related to the one appearing in free boson parti-
tion functions which are well studied in the context conformal
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field theory [29]. The aspect-ratio-dependent correction turns
out to be very important in the analysis of the numerical data
presented in Sec. VI.

We therefore have

− ln
(
posc

max

) = const. × L2 + 1

4

(χ

6
− 1

)
ln(L2) + O(1)

(14)
and, specializing to the torus (χ = 0),

− ln
(
posc

max

) = const. × L2 − 1
4 ln(L2) + O(1). (15)

In the following, we are often interested only in the universal
logarithmic contribution and express, for example, Eq. (15) as

− ln
(
posc

max

) ∼ − 1
4 ln (L2). (16)

If compared directly with the numerical QMC results for the
n = ∞ SRE (Table I), the log coefficient −NNG

4 obtained above
is clearly off, with a wrong sign in particular. As we argue
later, this is due to the fact that the oscillator contribution
provides only one part of the logarithmic terms. The other part,
discussed in Sec. III, is due to the fact that the ground state
of a system of finite volume (as is the case in the simulations)
is rotationally invariant, contrary to the initial assumption of a
broken-symmetry state. We note that this rotational symmetry
of finite systems also plays an important role concerning
logarithmic terms in the entanglement entropy [17,30]. Before
dealing with this important point (in the context of SRE), we
discuss the n dependence of the oscillator contribution to the
SRE.

D. Finite Rényi index

So far we only considered one probability, pmax, of
observing the configuration with φr = 0. We will now discuss
the ln(L) contribution to the finite-n SRE.

Each probability pi [Eq. (1)] can be obtained in a path
integral formalism, by imposing the state |i〉 at τ = 0, the
plane corresponding to the imaginary time origin. As already
discussed in the context of spin chains [14,31], the quantity

Zn =
∑

i

pn
i (17)

can be represented as an imaginary time path integral for the
field theory with n replica fields φ(1),φ(2), . . . ,φ(n). Except
at τ = 0, replica fields are decoupled, and each of them is
described by the same free boson field Lagrangian. At τ = 0,
we impose the “gluing condition”

φ(1) = φ(2) = . . . = φ(n). (18)

This condition can be solved exactly, in a similar manner to
the analysis in 1 spatial dimension. In fact, in general, we need
to include possible boundary perturbations, which turn out to
be very important as we will discuss below.

1. Without boundary perturbations

Keeping the caveat in mind, first let us discuss what would
be the SRE in the absence of boundary perturbations. In terms
of the field theory, we can simply introduce the new basis of

the replica fields:

�(0) = 1√
n

∑
j

φ(j ), (19)

�(1) = 1√
2

(φ(1) − φ(2)), (20)

.... (21)

That is, �(0) the “center of mass” field, and the remaining
n − 1 fields �(1), . . . ,�(n−1) are difference fields. The gluing
condition (18) amounts to imposing the Dirichlet boundary
condition �(j ) = 0 for the difference fields but leave the center-
of-mass field �(0) free [32,33]. It then follows that

Zosc
n =

(
zD

z0

)n−1

, (22)

where zD is the partition function for the single free boson
field with the Dirichlet boundary condition imposed at τ = 0,
and z0 is the partition function of the single free boson without
imposing any boundary condition at τ = 0. Precisely speaking,
the “boundary” τ = 0 is in the middle of the entire system
defined for −∞ < τ < ∞ we consider. Nevertheless, it can
still be regarded as a boundary of 2n-component boson field
after a folding procedure [31]. Since imposing the Dirichlet
boundary condition is equivalent to freezing the fluctuation of
the order parameter,

posc
max = zD

z0
. (23)

Thus we find

Zosc
n ∼ (

posc
max

)n−1
, (24)

concerning the universal subleading contribution to Sn. This
would give

Sosc
n = 1

1 − n
ln Zosc

n ∼ − ln posc
max ∼ −NNG

4
ln N. (25)

which is actually the same as S∞. For the free boson field
theory in 1+1 dimensions, the resolution of the gluing
condition is in fact tricky because of the subtlety in the
compactification of the boson field [31], leading to a correction
to the result as derived by the above argument. However, in
two spatial dimensions, the boson field can be regarded as
noncompact and the simple derivation as given above stands
correct.

The same result can be also derived without using replica
trick, following the analysis in 1 spatial dimension given in
Ref. [10]. Ignoring the possible boundary perturbations is
equivalent to consider the purely Gaussian wave function:

ψ({φk}) =
∏
k �=0

(
ρs |k|
πc

)1/4

exp

(
−ρs |k|

2c
|φk|2

)
. (26)

For such a state, the calculation of Zn is just a Gaussian
integration, and it can therefore be performed explicitly. The
result has a simple expression in terms of posc

max Eq. (15):

ZGauss
n =

(
posc

max,ρs

)n

posc
max,nρs

, (27)
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where we have explicitly kept the dependence on the stiffness,
and where the denominator is evaluated at a modified value of
the stiffness ρ̃s = nρs . For the massless oscillators discussed
previously, the universal logarithm in ln posc

max,ρs
is actually

independent of ρs [see Eq. (15)]. Thus we find the same result
as Eqs. (24) and (25). This derivation has an advantage that
it is exact for an arbitrary real n and does not rely on the
analytic continuation in n which is usually required in a replica
trick. However, it should be still noted that it does rely on the
assumption of purely Gaussian wave function. Even though
such a Gaussian form correctly captures the long-wavelength
fluctuations of the order parameter, it does not describe exactly
the short-distance degrees of freedom on the lattice. Neglecting
the non-Gaussian terms in the wave function corresponds to
ignoring the effects of possible boundary perturbations in the
replica formulation.

2. With the relevant boundary perturbation

In the preceding analysis, we ignored the possible boundary
perturbations, which can be important. In the replica field
formulation, the replica fields are decoupled in the bulk and
each replica is described by the same Lagrangian density. For
the bulk, we already know the asymptotically exact low-energy
effective theory, which corresponds to the infrared fixed point
of the renormalization group. However, at the “boundary” (τ =
0), which is introduced by taking the inner product with the
basis states, the replica fields are coupled and other boundary
perturbations can arise. In the presence of a relevant boundary
perturbation, the boundary condition is renormalized into a
different one, leading to a different SRE. The general principle
is that all the boundary perturbations which are allowed by
symmetries would arise, unless they are eliminated by fine-
tuning. In SRE, because of the choice of the basis, the U(1)
symmetry is generally broken explicitly.

In fact, the change of boundary condition induced by the
boundary perturbation and the resulting “phase transition”
in SRE were studied in 1 spatial dimension [14]. There,
the leading boundary perturbation which is allowed by the
breaking of the U(1) symmetry and is consistent with the
compactification of the boson field is cos φ

R
, where R is the

compactification radius. This implies, for the center-of-mass
field, the boundary perturbation cos �(0)√

nR
. This is relevant for

n > nc. Once relevant, it locks the center-of-mass field at the
boundary, giving rise to the Dirichlet boundary condition.

In contrast, in the 2D case discussed here, the boson field
describes a small fluctuation on the broken symmetry states,
and thus it can be regarded as noncompact. Therefore we
expect the boundary mass term ∼φ2 to appear, once the
U(1) symmetry is broken. The important difference from 1
dimension is that, the boundary mass term is always relevant
(but see Sec. IV). Its effect is still similar to one-dimensional
case, locking the center-of-mass field at the boundary. This
results in the Dirichlet boundary condition on all the n replica
fields. Thus the partition function reads

Zosc
n =

(
zD

z0

)n

(28)

[compare with Eq. (22) in the absence of the bound-
ary perturbation]. This leads to the universal logarithmic

correction as

Sosc
n ∼ − n

n − 1
ln posc

max ∼ −NNG

4

n

n − 1
ln(N ). (29)

III. DEGENERACY FACTOR

We have derived the universal oscillator contribution to SRE
in the previous section. The final result for SRE, however, also
requires a consideration of the ground-state degeneracy due to
the spontaneous symmetry breaking.

Let us briefly review the standard concept of tower of
states (TOS) [34–37], which reconciles the fact that the finite-
size (antiferromagnetic) eigenstates are rotationally invariant
while, in D � 2, the system can break the rotational symmetry
in the infinite volume limit at T = 0.

If a spin Hamiltonian H has a continuous rotation symme-
try, say U(1) for simplicity, the total angular momentum Sz

tot =∑
r Sz

r (generator of the rotations) is a conserved quantity,
and one can chose the eigenstates of H such that they are
also eigenstates of Sz

tot. For an antiferromagnetic system, the
finite-size ground state has Sz

tot = 0 and is thus rotationally
invariant.1

This may seem in contradiction with the possible spon-
taneous symmetry breaking. However, the symmetry of the
finite-size ground state of course does not rule out the
possibility of the spontaneous symmetry breaking. Indeed,
the spontaneous symmetry breaking is, rigorously speaking,
a concept which applies to the thermodynamic limit, where
ground states that break the symmetry must be degenerate.

In order to realize some spontaneous symmetry breaking
in the thermodynamic limit, the finite-size spectrum must
contain low-energy eigenstates above the symmetric ground
state. Generic finite-size eigenstates of the Hamiltonian are
also eigenstates of Sz

tot, and thus each of them does not break
the symmetry. The “physical” ground states in the thermo-
dynamic limit, which do break the symmetry, correspond to
superpositions of the finite-size low-energy eigenstates. In the
case of the spontaneous breaking of a continuous symmetry,
which is the focus of the present paper, there must be an
infinite number of such symmetry-breaking physical ground
states in the thermodynamic limit. In order to produce these
symmetry-breaking physical ground states as superpositions,
the number of the low-energy eigenstates in the finite-size
spectrum must grow as the system size is increased. The set
of these low-energy states (including the ground state) which
reflect the spontaneous breaking is commonly called Anderson
TOS.

As discussed above, the finite-size counterpart of
the symmetry-breaking ground states (hereafter finite-size
symmetry-breaking states for brevity) are given by appropriate
superpositions of the finite-size eigenstates belonging to the
Anderson TOS. This also implies that the symmetric finite-size
ground state is given by a superposition of the symmetry-
breaking states.

1This was shown rigorously for an Heisenberg-like (or XXZ)
model on a bipartite lattice (with the same number of sites on both
sublattices): the Lieb-Mattis theorem [44].
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It is helpful for understanding to map the spin system with
Sz

tot conservation to an interacting many-boson problem, by
identifying S+

r with the creation operator ψ†(r) and S−
r with

the annihilation operator ψ(r). Then Sz
tot corresponds to the

total number of particles, with a constant offset per site. In a
symmetry-breaking ground state in the thermodynamic limit
|φ〉, ψ(r) is thought to have a nonvanishing expectation value,
which can be regarded as an order parameter. Specifically,

〈φ|ψ(r)|φ〉 = √
ρse

iφ, (30)

where ρs > 0 represents the superfluid density and φ repre-
sents the phase of the condensate. The symmetry-breaking
ground state |φ〉 is labeled by the phase φ, a continuous
parameter, and thus is infinitely degenerate.

Now let us consider a finite-size system. A finite-size
symmetry-breaking state would also satisfy Eq. (30). Such
a state may be given as a coherent state satisfying

ψ(r)|φ〉 ∼ √
ρse

iφ|φ〉. (31)

The expectation of the total number of particles N
p
tot in such a

state is 〈
N

p
tot

〉 =
∑

r

〈φ|ψ†(r)ψ(r)|φ〉 = Nρs. (32)

Likewise, we can also evaluate〈(
N

p
tot

)2〉 =
∑
r,r′

〈φ|ψ†(r)ψ(r)ψ†(r′)ψ(r′)|φ〉

= (Nρs)
2 + Nρs. (33)

This implies a nonvanishing fluctuation〈(
�N

p
tot

)2〉 = Nρs. (34)

The fluctuation of N
p
tot (fluctuation of Sz

tot in the spin-system
context) is actually required by the uncertainty relation

�N
p
tot�φ � 1

2 , (35)

which is a consequence of the noncommutativity[
N

p
tot,φ

] ∼ i. (36)

Equations (34) and (35) implies that the finite-size symmetry-
breaking state also has an uncertainty in its phase:

�φ = O
(

1√
N

)
. (37)

In other words, a symmetry-breaking state “occupies” a finite
patch on the circle representing all the possible order parameter
directions, as illustrated in Fig. 1.2 This implies that two finite-
size symmetry-breaking states are distinguishable only if their
phases differ by more than �φ = O( 1√

N
).

This can be also confirmed with the explicit construction of
the coherent state

|φ〉 = e− ρs
2 exp

[√
ρse

iφ

√
N

∑
r

ψ†(r)

]
|vac〉, (38)

2Note that this scaling for the transverse fluctuations can also be
obtained using a linear spin-wave calculation.

O(N)

1/2

O
(N

    ) O(N)

O
(N

    )
1/2

SU(2) U(1)

|1>

|2>

|3>

|4>

|1>

|2>
|3>

|4>|5>

...

FIG. 1. (Left) The order parameter fluctuations in the broken
symmetry states |i〉 of a collinear SU(2) antiferromagnet are schemat-
ically represented as patches on a sphere (the order parameter mani-
fold). Since the typical transverse fluctuations of the order parameter
(sublattice magnetization) are ∼N�φ = O(N

1
2 ) [Eq. (37)], each

patch occupies an area ∼O(N ). From the fact that the area of the
sphere is ∼N 2, we get that the number Q of nonoverlapping patches
scales as O(N ). (Right) Case of a U(1) order parameter, where each
broken symmetry state |i〉 is represented by a (colored) arc on the
circle. Knowing that the transverse fluctuations are also ∼N

1
2 , the

phase space argument leads to Q ∼ N
1
2 independent states.

where |vac〉 is the vacuum with no boson present. Using this
expression, we find

|〈φ|φ′〉| = exp [−ρsN (1 − cos |φ − φ′|)]
∼ exp

[− 1
2ρsN (φ − φ′)2

]
, (39)

which is small when |φ − φ′| � O( 1√
N

). Therefore, in a finite-

size system of N sites, there are O(
√

N ) linearly-independent
symmetry-breaking states in the case of the spontaneous
breaking of a U(1) symmetry.3 It should be noted that the
oscillator modes discussed in Sec. II are not included in
the above construction of the coherent states, which are
only used for counting the number of (almost) independent
symmetry-breaking ground states. The final result on the SRE
is obtained by combining the counting of the symmetry-
breaking ground states and the contribution from the oscillator
modes, as it will done later in this paper. We also note that,
the simple coherent states discussed above do not precisely
represent physical symmetry-breaking ground states in the
presence of interactions (which is always the case for quantum
antiferromagnets) [38]. Here those simple coherent states are
used for simplicity, as they should lead to the same number
of independent symmetry-breaking ground states. The same

3From Eq. (34), we see that the states in the TOS have a typical spin
Sz

tot ∼ √
N . Since the energies of the eigenstates in the TOS scale

as E � (Sz
tot)

2/N [37] (the kinetic energy of a quantum rotor with
angular momentum Sz

tot and a moment of “inertia” proportional to the
total number of spins), these states have a typical energy E ∼ O(1)
relative to the finite-size symmetric ground state. This corresponds
to a vanishing energy density in thermodynamic limit, as it should.
Finally, in the broken U(1) case, the TOS is known to contain one
eigenstate per value of Sz

tot [37]. The fact that the typical value of Sz
tot

scales as
√

N then implies a total number of state is also O(
√

N).
This is consistent with what we found using the coherent state ansatz.
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argument, when applied to an SU(2) symmetry broken down
to U(1) (collinear antiferromagnet) leads to the conclusion
that a low-energy symmetry-breaking state occupies a solid
angle δ� ∼ 4πN−1 on the Bloch sphere representing the order
parameter manifold (see Fig. 1).

In a more general situation, we expect (phase space volume
argument) the TOS dimension Q to scale as ∼Nα , with an
exponent α which only depends on the number of Nambu-
Goldstone modes:

α = NNG/2. (40)

As discussed in Introduction, throughout this paper we con-
sider systems with only type-I (type-A with linear dispersion)
Nambu-Goldstone modes, where the number of Goldstone
modes is equal to the number of broken symmetry generators.

IV. RÉNYI PARAMETER (n) DEPENDENCE OF THE SRE

Now that we have all the necessary ingredients, we shall
give the final results on the universal log correction to the
SRE. As we will discuss below, the results depends on the
Rényi parameter n.

A. n > 1

The choice of the x basis explicitly breaks the U(1)
symmetry of the XXZ model (or SU(2) symmetry of the
Heisenberg model). This symmetry breaking appears in the
fact that, upon re-weighting the basis configurations according
to pi → pn

i , the order parameter will preferentially be aligned
with the x direction. This is obvious in the limit n → ∞, where
the only configuration left is the one with the largest probability
pmax and corresponds to a perfectly ordered state with order
parameter pointing in the x direction. While such a preferential
direction is nontrivial for a finite n, we expect it to hold
for n > 1 since, as we will discuss later, the exact rotational
symmetry is restored at n = 1 only. In terms of the field theory,
such a preference is represented by a boundary mass term.
Since such a mass term is always a relevant perturbation, we
expect Eq. (29) to hold for general n > 1. However, as we
have mentioned earlier, Eq. (29) contains only the oscillator
contributions.

What enters in the SRE is the probability pmax, and, for
the x-basis measurement of the antiferromagnetic XXZ model
we consider in this paper, we note |+〉 the associated spin
configuration. That is,

pmax = |〈�|+〉|2. (41)

As we have discussed in Sec. III, the symmetric finite-
size ground state |�〉, with Sz

tot = 0, is built as a linear
superposition of Q ∼ Nα symmetry-breaking states noted
{|1〉,|2〉, · · · ,|Q〉}. The U(1) case would correspond to α = 1

2
and SU(2) → U(1) would be α = 1 (see Fig. 1). We thus write

|�〉 = 1√
Q

(|1〉 + |2〉 + · · · + |Q〉). (42)

As a consequence,

pmax = |〈�|+〉|2 = 1

Q

∣∣∣∣∣
Q∑

i=1

〈i|+〉
∣∣∣∣∣
2

. (43)

We can choose the states appearing in Eq. (42) so that only one,
say |1〉, has an order parameter direction which matches that
of the classical configuration |+〉. We argue that

∑Q
i=1〈i|+〉

is dominated by the i = 1 term, and that the others may
be ignored in the limit N → ∞, as they are exponentially
suppressed as a function of the system size N relative to the
dominant i = 1 term.

On the other hand, since the state |1〉 is “aligned” with
the classical state |+〉, 〈1|+〉 will precisely have the oscillator
contribution as in Eq. (15). So, as far as the universal part is
concerned, we may thus write

pmax � 1

Q
|〈1|+〉|2 = 1

Q
posc

max (44)

with Q ∼ NNNG /2. We finally get

− ln (pmax) ∼ − ln
(
posc

max

) + 1
2NNG ln(N ) (45)

∼ + 1
4NNG ln(N ). (46)

As already discussed in Sec. II D, we argue that, for
n > 1 where the boundary mass is relevant, the universal
contribution to the SRE is dominated by that of pmax so that
Sn ∼ n

1−n
ln(pmax). Now pmax receives ln N contributions from

the gapless oscillator modes, as well as from the degeneracy
factor Q discussed above. We may thus write

Sn>1 ∼ n

n − 1

(
ln(Q) − ln

(
posc

max

))
. (47)

Replacing Q by NNNG/2 and − ln (posc
max) by Eq. (15), we finally

obtain

Sn>1 ∼ NNG

4

n

n − 1
ln(N ). (48)

In Table I, the result above is compared to the QMC results
obtained by Luitz et al. (Toulouse group) [21] at n = 2, 3, 4,
and ∞. The agreement is reasonable, and especially good
for n = ∞, although not perfect. We also note that their
results for models without continuous symmetry breaking
(gapped phase of the XXZ model) indicate the absence of
ln N correction, which is of course consistent with the present
analysis. We stress that the error bars given in Table I do not
include the (significant) variations when larger system sizes
are included. For this reason, we believe that the numerical
data are consistent with our predictions. The apparently
larger discrepancy between the theoretical prediction and the
numerical estimate is partly attributed to the smallness of the
boundary mass perturbation for smaller Rényi parameter n.
In fact, as we will discuss in Sec. V B, the boundary mass
perturbation should vanish at n = 1. Thus the crossover to the
asymptotic behavior predicted theoretically for n > 1 would
occur at larger lengthscale when n is decreased towards 1.
We hope that further progress in numerical methods and
theoretical understanding of finite-size effects will improve
the agreement.

An important support to the above reasoning is provided by
the exact result for the SRE of the Lieb-Mattis model [21]. The
latter has an SU(2) → U(1) TOS (hence α = 1 and Q ∼ N )
but no gapless spin-waves (hence no oscillator contribution to
the entropy). The ground state of this model was shown to have

195161-7



MISGUICH, PASQUIER, AND OSHIKAWA PHYSICAL REVIEW B 95, 195161 (2017)

Sn>1 = n
n−1 ln N + O(1) [21], which is in agreement with the

first term (TOS contribution) in the right-hand side (r.h.s.) of
Eq. (47).

B. n = 1

The case n = 1 requires a special consideration. When
n = 1, the boundary still retains the exact symmetry of the
Hamiltonian. This can be seen because

Z1 =
∑

i

pi =
∑

i

〈�|i〉〈i|�〉 = 〈�|�〉 = 1. (49)

Namely, there is no particular boundary condition imposed at
τ = 0; it is rather a fictitious cut of the Euclidean space-time.

Even for n = 1, the boundary mass could be added as a
perturbation. However, the exact symmetry discussed above
implies that the boundary mass perturbation is absent in
the present problem for n = 1. The absence of boundary
mass corresponds to the quadratic action and thus to the
Gaussian wave function, Eq. (26). The Shannon entropy is
then calculated using the Gaussian wave function trick as the
n → 1 limit of Eq. (25).

The exact symmetry means that there is no preference
given to the direction of the order parameter. Thus, all the Q

symmetry-breaking ground states contained in the finite-size
ground state [as in Eq. (42)] contribute to the universal part of
pmax. Therefore, unlike in the case of n > 1, the 1/Q factor is
missing, and the final result is given by

S1 ∼ − ln posc
max ∼ −NNG

4
ln N, (50)

where the universal logarithmic correction entirely comes from
the oscillator contribution. The lack of the degeneracy factor
can be indeed confirmed with the exact result

S1 ∼ 0 (51)

for the Lieb-Mattis model [21], in which there is no oscillator
contribution. The logarithmic correction in the Lieb-Mattis
model comes only from the degeneracy factor; the fact that
the ln N term precisely vanishes at n = 1 implies that the
degeneracy factor is also absent there, reflecting the exact
symmetry as discussed above.

C. n < 1

The SRE is still well-defined for n < 1. In fact, it has
been studied numerically for 1 spatial dimension, using exact
numerical diagonalization [14]. On the other hand, estimate
of the SRE using Quantum Monte Carlo simulation is more
difficult for smaller n, as contributions of smaller probabilities
pi are more pronounced. It is also difficult to perform
simulations when n is not an integer greater than one, since
this prevents the use of replica-based algorithms. In fact, to
our knowledge, no numerical data for the SRE at n < 1 is
yet available in 2D. Since analytical prediction of the SRE is
also subtle for n < 1, in this paper, we refrain from making
a prediction in this regime and leave this question for future
studies.

V. LINE SUBSYSTEM

So far we considered the configurations of the whole
system, but it is also possible to consider the probabilities
(and associated entropies) of the configurations of a subsystem,
noted �. For instance, the SRE of a segment in a critical spin
chain was found to have some striking similarities with the
entanglement entropy of that segment [39,40]. In this section,
will specialize to the case where � is a line embedded in a 2D
system. In that case, using QMC and spin-wave calculations
[41], the entanglement entropy was recently shown to have
some logarithmic correction. We show here that the SRE
possesses some very similar universal subleading term.

A. Oscillators

We first study the oscillator contribution to p�
max, the

probability of the most likely configuration of the region
� (in the chosen basis). For this, we consider the reduced
density matrix of a subsystem in the framework of Eq. (4).
Since the Hamiltonian is Gaussian for the variables φr , the
reduced density matrix ρ� is also Gaussian. But to get the
SRE entropies, and p�

max in particular, we do not need the full
reduced density matrix but only its diagonal elements. The
latter, being again Gaussian, must have the following form:

〈φ|ρ�|φ〉 = 1

Z�

exp

{
−1

2

∑
rr′∈�

φr[(G|�)−1]r−r′φr′

}
, (52)

where the state |φ〉 has a fixed “angle” φr at each site and
(G|�)r,r′ is the correlation function for two sites inside the
region �. Using Trρ� = 1 and Gaussian integration, the
normalization factor can be expressed using the determinant
of the correlation matrix G|�:

Z� = √
det(2πG|�). (53)

So, we already see that the probability p�,osc
max to observe φr = 0

everywhere in � is given by

p�,osc
max = 1/Z� = [det(2πG|�)]−1/2, (54)

or, in terms of the eigenvalues gk of G|�,

− ln
(
p�,osc

max

) = 1

2

∑
k

ln (2πg(k)). (55)

Now we specialize the above calculation to the case where
� is a line. Due to the linear dispersion relation of the
Goldstone mode, the long-distance behavior of the (transverse)
correlation G|�(r) is related to the (two-dimensional) Fourier
transform of 1/k, that is,

G|�(r → ∞) = G(r → ∞) ∼ 1/r. (56)

Now we transform this correlation back to real space, but
restricting to the one-dimensional momentum k along the line.
We get

g(k → 0) ∼ − ln(|k|). (57)

If we replace g(k) by ∼ −a ln(|k|) in Eq. (55) (a > 0 is some
nonuniversal factor) and if we regularize the sum by taking a

195161-8



FINITE-SIZE SCALING OF THE SHANNON-RÉNYI . . . PHYSICAL REVIEW B 95, 195161 (2017)

finite line with L sites, we obtain

− ln
(
pline,osc

max

) = 1

2

L/2−1∑
n=−L/2,

n �=0.

ln

[
−2πa ln

(
2πn

L

)]
, (58)

This sum can be analyzed using an Euler-Maclaurin expansion.
The dominant part turns out to be proportional to L, and the first
subleading correction turns out to be very slowly diverging:

− ln
(
pline,osc

max

) = const. × L − ln ( ln(L)) + O(1). (59)

In other words, there is no ln(L) term, contrary to the largest
probability for the full system [compare with Eq. (15)].

B. Degeneracy factor

The phase space argument of Sec. III to treat the TOS
contribution needs to be adapted for the probability pline

max
to observe an ordered configuration along a line. Indeed, if
we specify an ordered configuration |ord〉 only on a line, it
involves L sites only and the order parameter direction is fixed
with a lower “precision”. Consequently, we expect that several
broken symmetry states |i〉 (of the whole system) could have
some significant “overlap” with |ord〉.

Let us examine the case of the U(1) symmetry breaking.
The symmetry-breaking ground state may be represented by a
coherent state. The explicit expression (38) can be also written
as

|φ〉 = e− ρs
2

∏
r

[
exp

(√
ρse

iφ

√
N

ψ†(r)

)
|vac〉r

]
. (60)

This shows that the coherent state is a product state.
Fixing the spin configurations on the line amounts to taking

the partial trace of the ground-state density matrix |�〉〈�| over
the spin variables outside the line, and then projecting on the
fixed spin configuration on the line. As we argued earlier,
the finite-size symmetric ground state |�〉 may be written
as a superposition of almost independent symmetry-breaking
(coherent) states as in Eq. (42). We thus first write the reduced
density matrix of the line:

ρline = 1

Q

Q∑
i,j=1

Trline(|i〉〈j |), (61)

where the trace is performed over the degrees of freedom lying
outside the line. Because the exterior of the line is a large
subsystem (∼N sites) it seems clear that no state |e〉 outside
the line can achieve a significant overlap simultaneously with
|i〉 and |j 〉 if i �= j . Furthermore, since the coherent state is a
product state, the partial trace can be carried out to obtain

ρline ∼ 1

Q

Q∑
j=1

∣∣∣∣φ = 2πj

Q

〉
line

ρline

〈
φ = 2πj

Q

∣∣∣∣, (62)

where |φ〉line is a coherent state defined on the line. However,
an evaluation of the overlap between the coherent states on the
line similar to Eq. (39) reveals that they are independent only
if the angle parameters differ by O(1/

√
L) or more. Thus, in

terms of the (almost) independent coherent states on the line,

ρline ∼ 1

Q̃

Q̃∑
j=1

∣∣∣∣φ = 2πj

Q̃

〉
line

ρline

〈
φ = 2πj

Q̃

∣∣∣∣, (63)

where Q̃ = O(
√

L) and the overall factor is determined by the
condition Trline ρline = 1.

Thus we find

pline
max � 1

Q̃
pline,osc

max (64)

or, equivalently,

− ln
(
pline

max

) � − ln
(
pline,osc

max

) + 1
2 ln (L). (65)

Similar arguments can be constructed for the SU(2) case,
leading to a ln (L) term. More generally, we may conjecture
that the result only depends on the number of Goldstone
modes:

− ln
(
pline

max

) � − ln
(
pline,osc

max

) + NNG

2
ln (L). (66)

C. Final result and comparison with the numerics

As just done for the whole system, we can combine the
oscillator contribution [i.e., no ln L term, see Eq. (59)], the
TOS contribution [Eq. (66)] and the argument of Sec. IV to
get the n dependence. The final result for the SRE is

S line
n>1 ∼ NNG

2

n

n − 1
ln(L). (67)

For n = ∞, Luitz et al. [22] found the coefficient of ln(L)
to be �0.7 for a system with NNG = 2 (to be compared to 1
from the formula above). In a more recent work [25], the QMC
calculations were pushed up to L = 40 for n = 2, 3, 4, up to
L = 128 for n = ∞ and up to L = 30 for noninteger values
n. In all cases, the QMC results are in good agreement with
Eq. (67).

VI. pmax FOR THE 2D SPIN- 1
2 XY MODEL ON THE

SQUARE LATTICE

In order to provide some additional check for our pre-
dictions concerning pmax, we consider the ferromagnetic XY
model on the square lattice:

H = −
∑
〈i,j〉

(
Sx

i Sx
j + S

y

i S
y

j

)
, (68)

which spontaneously breaks the U(1) symmetry in the thermo-
dynamic limit (NNG = 1). The ground state |ψ〉 in the Sz

tot = 0
sector was obtained numerically using 2D DMRG [42] (using
the C++ ITENSOR library [43]) on cylinders of length Lx and
circumference Ly , up to Ly = 12. The probability pmax is
defined by projection onto the state where all spins point in
the (say) x direction:

pmax = |〈|ψ | → · · · →〉|2. (69)

Once |ψ〉 is in a matrix-product form (as produced by the
DMRG algorithm), pmax is easily obtained by computing the
scalar product with the ferromagnetic configuration above
(a product state). The numerical results are given in Table II
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TABLE II. DMRG results for pmax in the 2D XY ferromagnet.
Lx is the length of the cylinder, and Ly is the perimeter. E is the
ground-state energy. Due to the area-law scaling of the entanglement
entropy, χ should grow exponentially with Ly to ensure an accurate
description of the wave function. The last column provides the largest
truncation error measured during the last DMRG sweep.

Lx Ly E − ln(pmax) χ sweeps error

4 4 −8.0167741 1.864172 256 17 0
6 4 −12.4272461 2.285488 800 15 5.96 × 10−14

8 4 −16.8429370 2.675768 800 16 2.44 × 10−13

10 4 −21.2608268 3.049265 800 16 7.944 × 10−13

12 4 −25.6798523 3.412229 100 20 3.753 × 10−13

6 6 −18.4620013 2.701232 1000 33 1.17 × 10−9

8 6 −25.0549930 3.155927 1000 29 1.83 × 10−9

10 6 −31.6501154 3.594168 1000 26 2.85 × 10−9

12 6 −38.2463365 4.021994 2000 41 1.65 × 10−10

14 6 −44.8431957 4.442731 2600 30 6.43 × 10−11

16 6 −51.4404602 4.858276 2600 36 9.10 × 10−11

24 6 −77.8315765 6.488096 2600 31 2.32 × 10−10

4 8 −15.7729479 2.570953 3000 22 5.33 × 10−9

8 8 −33.3327539 3.674920 3000 50 4.47 × 10−9

9 8 −37.7249437 3.936932 3000 41 5.07 × 10−9

10 8 −42.1174937 4.195792 3000 33 5.91 × 10−9

11 8 −46.5103127 4.452070 4000 50 2.04 × 10−9

12 8 −50.9033297 4.706283 4000 50 2.36 × 10−9

13 8 −55.2965038 4.958716 4500 40 1.73 × 10−9

14 8 −59.6898005 5.209670 4500 50 1.98 × 10−9

15 8 −64.0831974 5.459323 4800 50 1.73 × 10−9

16 8 −68.4766749 5.707869 4800 50 1.93 × 10−9

20 8 −86.0511590 6.693276 4800 50 3.00 × 10−9

24 8 −103.626222 7.668465 4800 50 3.92 × 10−9

4 10 −19.6833386 2.921201 4000 38 9.21 × 10−8

5 10 −25.1667352 3.252921 4000 46 6.61 × 10−8

7 10 −36.1399647 3.891643 4000 50 6.70 × 10−8

8 10 −41.6279980 4.202464 4000 49 6.83 × 10−8

9 10 −47.1165448 4.509336 4000 50 7.40 × 10−8

10 10 −52.60545201 4.813080 4000 50 8.13 × 10−8

11 10 −58.0946827 5.114146 5000 45 4.60 × 10−8

12 10 −63.5840956 5.413127 6000 40 2.90 × 10−8

13 10 −69.0736369 5.710448 6000 45 3.12 × 10−8

14 10 −74.5633010 6.006292 6000 46 3.40 × 10−8

4 12 −23.5988117 3.268168 6000 45 3.64 × 10−7

5 12 −30.1784875 3.644283 6000 50 2.88 × 10−7

6 12 −36.7611498 4.012780 6000 50 2.81 × 10−7

7 12 −43.3450519 4.374877 5000 50 4.34 × 10−7

8 12 −49.9299175 4.732248 5000 42 4.36 × 10−7

9 12 −56.5153082 5.085815 5000 50 4.56 × 10−7

10 12 −63.1010587 5.436351 5000 50 4.85 × 10−7

11 12 −69.6874332 5.784312 6000 37 3.28 × 10−7

12 12 −76.2736890 6.130302 6000 34 3.47 × 10−7

and plotted in Fig. 2. The matrix dimensions (up to χ = 6000)
were chosen to ensure that the maximum truncation error stays
below 10−7 for Ly < 12 and below 5 × 10−7 for Ly = 12. This
insures a precision of at least four digits on pmax for the largest
systems.

We now discuss the theoretical prediction for pmax in the
cylinder geometry. First, the TOS contribution is expected to
be independent of the geometry and should therefore be [single
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FIG. 2. DMRG results for pmax in the 2D XY ferromagnet (data
given in Table II). The fitting function (fit restricted to the data points
with Lx,y � 10, see text) is shown with dashed lines. The prefactor
of the logarithm term, here 0.918/4 is in good agreement with the
theoretical prediction for a single Nambu-Goldstone mode (1/4). The
aspect ratio-dependent term fN (Ly/Lx), defined in Eq. (78), contains
no free parameter.

Nambu-Goldstone mode, see Eq. (45)]:

− ln
(
pTOS

max

) = 1
2 ln N, (70)

where N = LxLy . As for the torus, the oscillator contribution
to − ln(pmax) has a nonuniversal const. × N term, and some
universal part related to the determinant of the Laplacian:

− ln
(
posc

max

) ∼ − 1
4 ln det ′�. (71)

The leading universal part is a ln(N ) term related to the
Euler characteristics χ [see Eq. (13)]. From the fact that
χ = 0 on cylinder, we have ln det′ � ∼ ln(N ). Adding the
TOS contribution, one gets

− ln
(
posc+TOS,cyl.

max

) ∼ 1
4 ln (N ). (72)

In practice, the accessible system sizes are not large enough to
extract from − ln(pmax) the coefficient of the ln(N ) directly and
reliably. To analyze the finite-size data of Table II, it is therefore
interesting and useful to look also for the next subleading term
in ln det′ �. The latter is finite in the thermodynamic limit, and
it depends in some universal manner on the aspect ratio r =
Ly/Lx of the cylinder. Such terms are well known in the con-
text of partition functions in 2D conformal field theory, since
the determinant of the Laplacian is related to the (noncompact)
free-boson partition function (see Eq. (10.16) in Ref. [29]):

Zfree boson =
√

A

det ′�
, (73)

where A is the area (here A = N = LxLy).
In our case, we have a cylinder with free spins at the

boundaries. This translates to some free boundary conditions
(BC) for the oscillators, and such conditions are expected to
flow (in the renormalization group sense) to some Neumann
BC for the free field. So, we need to compute the determinant
of the Laplacian on a cylinder with Neumann BC. This quantity
can be computed using zeta-regularization [28], as detailed in
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Appendix A. The result is

det ′� = Ar

∣∣∣∣η
(

ir

2

)∣∣∣∣
2

, (74)

where η is the Dedekind η-function. Plugging this result in
Eq. (71) gives

− ln
(
posc,cyl.

max

) ∼ −1

4
ln (N ) − 1

2
ln

[√
rη

(
ir

2

)]
. (75)

We finally add the TOS contribution to get

− ln
(
posc+TOS,cyl.

max

) ∼ 1

4
ln (N ) − 1

2
ln

[√
Ly

Lx

η

(
iLy

2Lx

)]
.

(76)

So, we analyzed the data with the following fitting function:

− ln(pmax) � aLxLy + bLy + c

+ d

[
ln(LxLy)/4 + fN

(
Ly

Lx

)]
(77)

with fN (r) = −1

2
ln

[√
rη

(
ir

2

)]
, (78)

and a, b, c, and d are four free parameters. From our theoretical
analysis [Eq. (76)], d corresponds to the number of Nambu-
Goldstone mode(s) and should be close to 1. The result of the
fits is shown in Fig. 2. The dashed lines represent a fit to the
data points with Lx,Ly � 10, and gives d = 0.918. We note
that, although only the largest system sizes were used in the fit,
the function defined in Eq. (77) goes through all the data points
with a relatively good accuracy, including the small systems.
We also mention that the parameter d we have obtained is
relatively stable: we find d � 0.906 if we restrict the fit to the
cylinders with Lx,y � 8, d � 0.899 if we restrict to Lx,y � 6,
and d � 0.915 if we used all the data (including Lx,y as small
as 4). Although we have not performed a precise analysis of
the error bar, our experience with varying the number of data
points included in the fit indicates that the data we described
well by NGN � d = 0.9(1).

To check further the validity of this analysis, we have
fitted the data by the function above, but imposing d = 1.
This leaves three free parameters: the area coefficient a,
the linear coefficient b, and a constant c. We have plotted
in Fig. 3 the difference between the numerical data and
aLxLy + bLy + ln(LxLy)/4 + c. These variations, plotted as
a function of the aspect ratio r = Ly/Lx , appear to be very
well described by fN (r), as expected if there is an underlying
free boson system with Neumann boundary conditions. The
agreement between the data and fN is quite good, given the
fact the plot contains only three adjustable parameters.

VII. CONCLUSION

We have shown theoretically that a spontaneously broken
continuous symmetry leads to some universal logarithmic
contribution to the Shannon-Rényi entropies. By connecting
the Shannon-Rényi entropy due to Nambu-Goldstone mode
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Neumann: fN(r)=-log(√r η(ir/2))/2

FIG. 3. The DMRG results (Table II and Fig. 2) are fit-
ted to g(Lx,Ly) = aLxLy + bLy + c + ln (LxLy)/4 + fN (Ly/Lx)
(three adjustable parameters: a, b, and c). As for Fig. 2, the fit was
restricted to the data points with Lx,y � 10. The plot represents the
difference between the data and aLxLy + bLy + c + ln (LxLy)/4, as
a function of the cylinder aspect-ratio r = Ly/Lx . This difference
is well described by the aspect-ratio-dependent term fN (Ly/Lx)
[Eq. (78)] that is predicted for Neumann boundary conditions at the
edges of the cylinder.

fluctuations with the determinant of the Laplacian, we also
showed that the logarithmic contribution to the Shannon-Rényi
entropy is topological and depends on the Euler-Poincaré
characteristics of the two-dimensional system. As the ground
state of a finite-size system is symmetric while the choice of
the basis selects a particular symmetry-broken state, there is
an additional logarithmic contribution to the Shannon-Rényi
entropy corresponding to the ground-state degeneracy. Com-
bining the two contributions together, the universal logarithmic
term in the Shannon-Rényi entropy we find is in a good
agreement with the numerical result obtained by the Toulouse
group. We have also extended our analysis to the Shannon-
Rényi entropy defined with respect to a line subsystem.

The situation turns out to be remarkably similar to the
logarithms found in the entanglement entropy of a subsystem,
where, also, the zero-point motion of the oscillator modes and
the rotational symmetry of the finite-size ground state had to
be included [17]. This suggests that there is a deep connection
between the entanglement and Shannon-Rényi entropies,
despite the obvious differences such as partition dependence
of the former and the basis dependence of the latter. In fact, the
Shannon-Rényi entropy has been also discussed in the context
of the entanglement entropy in systems at conformal critical
points. There, the entanglement entropy in a certain class of
wave functions in D + 1 spatial dimensions is mapped to the
Shannon-Rényi entropy in a D-dimensional system [10]. On
the other hand, given the similarity of the present analysis to
that in Ref. [17], there might be a direct connection between
the two different entropies in the same D-dimensional system.
Elucidation of such a connection would be useful to advance
further our understanding on both entropies.

As in the case of the entanglement entropy, our hope is
that the Shannon-Rényi entropy will be useful as a diagnostic
tool to characterize and classify quantum phases, in particular
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those beyond the traditional classification scheme. Our efforts
in the present paper is limited to the conventional phases with a
spontaneous broken continuous symmetry, which are already
understood very well. Nevertheless, the fact that we can extract
the number of the Nambu-Goldstone modes from the scaling
of the Shannon-Rényi entropy suggests that this could be a
novel tool as useful as the entanglement entropy. In order to
extend the application of the Shannon-Rényi entropy to less
conventional phases, it would be important to develop a new
numerical scheme as well as analytical methods, since many
of interesting phases arise in the presence of frustration which
often makes quantum Monte Carlo simulations difficult.

A relatively straightforward extension of the present work
would be to study the effects of sharp corners in the system
geometry, which would also contribute to the logarithmic
divergence of the Shannon-Rényi entropy. Checking theses
property numerically would provide valuable tests for the
arguments presented here.

The symmetry argument presented in Sec. IV suggests that
the value n = 1 of the Rényi index corresponds to a phase
transition point, with a quite different predicted behavior of the
SRE [Eq. (50)]. Numerical verification of our prediction would
be an interesting problem. Further elucidation of this phase
transition, and exploration into the n < 1 phase also seems an
interesting direction of research, both from the analytical and
numerical point of views.
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APPENDIX A: LAPLACIAN DETERMINANT ON
CYLINDER WITH NEUMANN B.C.

We consider a cylinder of length Lx and circumference Ly .
In presence of Neumann B.C. at both ends, the eigenmodes
and eigenvalues of the Laplacian are

φn,m(x,y) = exp

(
2iπm

y

Ly

)
cos

(
πn

x

Lx

)
, (A1)

λn,m = −
(

2πm

Ly

)2

+
(

πn

Lx

)2

= −
(

2π

Ly

)2

|m + τn|2 ,τ = iLy

2Lx

, (A2)

where n = 0, 1, . . . ,∞ and m ∈ Z. This spectrum, with the
zero mode omitted, is used to define a generalized zeta
function:

Z(s) =
∑

n�0,m∈Z,

(n,m)�=(0,0).

1

|λn,m|s , (A3)

The sum is convergent for Re(s) > 1 and its analytical
continuation to s = 0 provides a (zeta) regularization for the
logarithm of the determinant:

Z′(0) = −
∑

n�0,m∈Z,

(n,m)�=(0,0).

ln |λn,m| = − ln det ′�, (A4)

To compute Z(s), we introduce another function

G(s) =
∑

n,m∈Z,

(n,m)�=(0,0),

1

|n + τm|2s
, (A5)

such that

Z(s) = 1

2

(
Ly

2π

)2s

(G(s) + 2ζ (2s)) (A6)

and

Z′(0) = ln

(
Ly

2π

)
(G(0) + 2ζ (0)) + 1

2
(G′(0) + 4ζ ′(0)) (A7)

(ζ (s) = ∑
n>0 n−s is the Riemann zeta function). The analytic

continuation of G(s) to s = 0 is a standard result (see, for
instance, Eq. (4.4) of Ref. [28]):

G(0) = −1, (A8)

G′(0) = − ln ((2π )2|η(τ )|4). (A9)

As for ζ , we have ζ (0) = − 1
2 and ζ ′(0) = − 1

2 ln (2π ). Plug-
ging these results into Eq. (A7), we get

Z′(0) = −2 ln

(
Ly

2π

)
− 1

2
( ln((2π )2|η(τ )|4) + 2 ln(2π ))

(A10)

= − ln
(
L2

y |η(τ )|2). (A11)

We finally obtain

ln det ′�cyl. = ln
(
L2

y |η(τ )|2) (A12)

= ln(LxLy) + ln

(
Ly

Lx

∣∣∣∣η
(

iLy

2Lx

)∣∣∣∣
2
)

, (A13)

as announced in Eq. (74). Note that the ln(LxLy) term in the
equation above corresponds to that of Eq. (13) (with χ = 0).

APPENDIX B: TORUS CASE

For completeness, we also mention that the method above
applies directly to the case of the torus. In that case, the result
reads [28]

ln det ′�torus = ln(LxLy) + ln

(
Ly

Lx

∣∣∣∣η
(

iLy

2Lx

)∣∣∣∣
4
)

.
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In terms of pmax, it gives (per Nambu-Goldstone mode)

− ln
(
posc,torus

max

) = const. × N − 1

4
ln (N )

− 1

2
ln

[√
Ly

Lx

∣∣∣∣η
(

iLy

2Lx

)∣∣∣∣
2
]
.

We finally add the TOS contribution to get

− ln
(
posc+TOS,torus

max

) = const. × N + 1

4
ln (N )

− 1

2
ln

[√
Ly

Lx

∣∣∣∣η
(

iLy

2Lx

)∣∣∣∣
2
]
.
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